문제
N×M크기의 배열로 표현되는 미로가 있다.
1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 1 |
미로에서 1은 이동할 수 있는 칸을 나타내고, 0은 이동할 수 없는 칸을 나타낸다. 이러한 미로가 주어졌을 때, (1, 1)에서 출발하여 (N, M)의 위치로 이동할 때 지나야 하는 최소의 칸 수를 구하는 프로그램을 작성하시오. 한 칸에서 다른 칸으로 이동할 때, 서로 인접한 칸으로만 이동할 수 있다.
위의 예에서는 15칸을 지나야 (N, M)의 위치로 이동할 수 있다. 칸을 셀 때에는 시작 위치와 도착 위치도 포함한다.
입력
첫째 줄에 두 정수 N, M(2 ≤ N, M ≤ 100)이 주어진다. 다음 N개의 줄에는 M개의 정수로 미로가 주어진다. 각각의 수들은 붙어서 입력으로 주어진다.
출력
첫째 줄에 지나야 하는 최소의 칸 수를 출력한다. 항상 도착위치로 이동할 수 있는 경우만 입력으로 주어진다.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
from collections import deque
n, m = map(int, input().split())
graph = []
for i in range(n):
graph.append(list(map(int, input())))
dx = [-1, 1, 0, 0]
dy = [0, 0, -1, 1]
queue = deque()
queue.append((0, 0))
while queue:
x, y = queue.popleft()
for i in range(4):
nx = x + dx[i]
ny = y + dy[i]
if nx < 0 or nx >= n or ny < 0 or ny >= m:
continue
if graph[nx][ny] == 0:
continue
if graph[nx][ny] == 1:
graph[nx][ny] = graph[x][y] + 1
queue.append((nx, ny))
print(graph[n - 1][m - 1])
|
cs |
'알고리즘 문제 > 알고리즘 문제풀이' 카테고리의 다른 글
백준 7569 토마토 3차원 (0) | 2020.10.27 |
---|---|
백준 7576 토마토 (0) | 2020.10.27 |
백준 1012 유기농 배추 (0) | 2020.10.26 |
백준 2667 단지번호붙이기 (0) | 2020.10.26 |
백준 2606 바이러스 (0) | 2020.10.26 |